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PREDICTION OF POLYTOMOUS EVENTS:
MODEL DESCRIPTION. ALGORITHM DEVELOPMENT

AND METHODOLOGICAL ASPECTS. WITH AN APPLICATION

I. O'MUIRC(IEARTAIGH
D. P. GAVER

1. Introduction

The prediction of dichotomous events in meteorology (fog/no fog,

precipitation/no precipitation) has been widely studied. Such predictions are

also of interest in reliability and survival analysis, and in manpower

planning. The analysis generally involves logistic regression or

(equivalently) linear discriminant functions. Most standard statistical

packages (e.g. BMDP, SAS) provide the facility for performing this analysis in

some form. Also, the book by Cox (1970) can be consulted.

A natural extension of this problem (and one which has many potential

applications in meteorology and elsewhere) is the situation in which the

predictand is polytomous, i.e. has multiple categories. For example, it might

be desired to predict visibility (good/marginal/bad) or precipitation

(none/rain/snow). Two (methodologically) distinct cases can be envisaged,

viz.

a. when the predictand involves ordered categories

b. when the categories are unordered.

Typically, the former case is the more common in meteorological applications, u

and this is the problem addressed in this report. .. ...---,

The particular application analyzed here involves 583 records of time to

formation of tropical storms, and associated values of various meteorological
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variables. The time to storm formation is polytomized and recorded as

1: storm formed within 24 hours

2: storm formed between 24 and 48 hours

3: storm formed between 48 and 72 hours

4: storm did not form

The five meteorological variables recorded were:

X 1 unconditional probability of storm formation - a measure of the

likelihood of storm formation in the particular disturbance

location at the given time of year.

X : large scale vorticity (computed over 5 Latitude grid).

X3: divergence (computed over 5 Latitude grid).

X4: small scale vorticity.(computed over 25 Latitude grid)

X5: local generation of vorticity (product of X3 and X4 ).

Our objective was to determine how much predictive information is provided by

the meteorological variables to facilitate prediction of imminence of tropical

storms. Essentially the problem involves regression models where the

dependent variable is ordinal. Much attention has been devoted to this

general problem in the statistical literature of recent years (McCullagh

[1980]. McCullagh and Nelder [1983], Green [1984]. Anderson [1984]). The

central concept is that of the generalized linear model (McCullagh and Nelder

[1983]).

In section 2 we describe briefly the concept of generalized models, and

in more detail, the particular model (an extension of [dichotomous] logistic

regression) utilized for our data. In section 3 we summarize the results of

an ad hoc application of the model to our data, present the relevant parameter

estimates, and evaluate the predictive performance of our model. A general
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discussion of our results is presented in section 4. together with suggestions

for future work.

2. The Model.

2.1 General formulation.

Following Green [1984] and McCullagh and Nelder [1963]. we consider a log

likelihood L, a function of an n-vector. 1q. of predictors. We postulate. in

our model, that the predictor 1q is functionally dependent on the p-vector 13 of

parameters of interest. For our particular application. i. and 13 are

specified in Section 2.2. The maximum likelihood estimation of 1 involves

essentially solution of the equations

DTu= O (1 )

where u -

nxl -1 i

and D - 6
nxp -6P3

using the notation of Green [1984]. Again following Green. the standard

Newton-Raphson method for the iterative solution of (1) involves evaluating u.

D and the second derivatives of L for an initial value of 13. and then solving

the linear equations

-6. - = (2)

for an updated estimate P3. r"r-en shows that this is approximately equivalent
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to the solution of

(D;AD) DTu (3)

where A = E(AL (6L T

rum Eq- ).

given an initial estimate of P (about which we have some further comments in

Section 2.3). Equation (3) can be solved directly for P . or. equivalently,

if a weighted least squares program is available, P results from regression

A- u + IP onto the columns of D using weight matrix A.

2.2 Specific Formulation.

In our application the data are in the form of N multinomial samples on

the same set of k(=4) response categories (e.g. categories 1. 2. 3 and 4

indicating storm imminence as described in Section 1). The data may be

arranged as a two-way table of counts Yij' i=l.. .N; J=l. ...4. The log-

likelihood L is then given by

L = I y log p (4)i J j Pij

4
where Pljare the cell probabilities, and P = 1.

In the case where the categories 1,2.....k are ordered. McCullagh and

Nelder [1983] and Green (1984] both suggest the model
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.1 Ix 13j p irmT

r=l P i  (5)

i=l. 2 .... N; J=1,2.....k-i.

where ij represent for fixed i, the cumulative cell probabilities, the matrix

(X im) represents covariate information and 4# is a given distribution function.

Motivation for their model is provided by considering the response variable as

an arbitrary grouping of an unobservable underlying variable on a continuous

scale with "cutpoints" 6 ... 6 k_ In some applications the 0 s will be1' ** k1
unknown and will need to be estimated; in others, such as the present one.

they will be known, because the categorical variable (storm imminence coded

1.2.3.4) really is an arbitrary grouping of an underlying continuous variable

based on known cutpoints (in this case that variable is time to storm

formation with cut-points 1=24, 2_-48 and 63=72 ) . For our application. we

chose P to be the logistic distribution function, viz.,

1 =(6)
l+e-x

This is the most widely used model in applications and has the advantage that

a simple transformation can be used to (a) graphically check the suitability

of the model and (b) provide initial values for the iterative estimation

process.
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Our model therefore is

1 ij (7)

ej - -um

+ exp Ti

or, in terms of previous notation

11= (8)

where = (31.... OMITI .... TN). Unless we impose constraints, identifiability

problems can arise. One common expedient (based on the concept of an

underlying continuous variable used for the classification) is to allow an

intercept and scale to write

M
J O- -- x. im

i "40(- m-l (9)

i=l .... N; j=1....k-l.

where O's are known.

A reformulation, more convenient for actual computation

M
i= (O + l1 + I Ximm+2) (10)ii m=l

2.3 Specific Methodology

We now apply the general methodology of Section 2.1 to the specific model

6
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described in equation (9). This involves two steps

(a) deriving explicit expressions for A. D and u described in that

section. and

(b) Finding a suitable starting value ~3for the iterative reweighted

least squares (IRLS) procedure.

We describe first the expressions for D, A and u for the special case of

M=l covariates with k--4 categories. The extension to other cases is

straightforward. If we let

1Nwl = (lle 1l2 13' *n2l' 1122.....'1N3)

81
where n =Nx3. then D = is amatrix given by

F(91,xl) O1F(O1 .xl) xF(01.xl)

F(6 2 '.x1) 02 F( @2.xl) xF( 02 ,xl)

=F(6 3 .x2) 83,F(GI.x2) x2F(63 .x2) (1

F(61.xN) % F(e1.xN) xNF( 61.xN)

where

F(Oi.x)= exp (0 2i1+3Xi 2
{ l+exp[P I +P 2 1 +x3)

Similarly. u LL Is given by
nx I,
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77i 1 7112 - 7111

Y 12  __13__

Y13 __14_

7113-nl2 1 - 7713

u (12)

Y2 1  __22__

n21 7122 - T'21

YN3 YN4

~T4371'N2 - 1-N

and A F(uxn F is given by

-712 10

T 1 -( 1113 7111) 10
712-7111 ~ 12"l 1~ )(713-T12) 11137'12

A 0 1 -( 1-71 12) (3
7113-T12 (713"12) (1-713) (3

0 -T'22

T'2 ('2-T21etc.

0 0

with tridiagonal 3x3 matrices similar to the one given above along the mai

diagonal, and zeroes elsewhere.



Each of A. D and u depends on the unknown parameters P. Given an initial

value for P we can evaluate A. D and u and commence the iterative process.

The initial values can be obtained by noting that if we apply a logit

transformation to yij in equation (10) to give

STij  = go + Ilej + 0 2xi (14)

then these logits are linear in the parameters . Initial estimates of can

be obtained by constructing empirical logits.

4 1
(P Yir ) +2
r=2

£ =l{-} (15)

n - ( yir +
r=1

and performing an unweighted least squares analysis for the model of equation

(14) using these empirical logits as the dependent variable.

Two points should be noted in relation to the estimation of initial

values for P. Firstly, the IRLS procedure is quite sensitive to the choice of

initial value, (see Green (1984)). and a poor choice can lead to

non-convergence of the algorithm. Secondly. to obtain initial values by this

procedure, it may be necessary to group the observations into categories based

on values of the independent variables(s). If the data are not so grouped,

(and our data consists essentially of multinomial samples of size 1). then all

Yij will be either 0 or 1 in our case this will lead to all the empirical

logits having value either In 3 or -In 3.
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Although. it may be necessary to group the data to obtain starting values

for P, the maximum likelihood estimation of P may be carried out for either

the grouped or the ungrouped data.

2.4 Computational procedure.

Since a stepwise program was not available, the model given by equation (10)

was estimated separately for each covariate. Using the deviance (the

likelihood ratio statistic against the saturated model) as a measure of

goodness of fit, the best single explanatory variable was X5 . Having thus

determined the optimal single variable for inclusion in the model, we then

proceeded to establish which, if any, variable should next be included in the

model. Due to the non-availability of a package for performing this analysis,

the computation involved was cumbersome; the inclusion of an additional

variable necessitated the re-programming of the computations leading to the

matrices/vectors A, D and u. It was determined that X2 was the next variable

which should be included in the model. A third step of the stepwise procedure

was also carried out. but no additional variable warranted inclusion in the

model.

Accordingly, in evaluating the predictive performance of the model, and

in comparing this performance with those of discriminant analysis and multiple

regression we used only the explanatory variables X5 and X2 "

3. Evaluation of the predictive performance of the model.

3.1 Introduction

The model developed In this paper essentially produces, for given values

of the covariates, estimates of WiJ' the cumulative category probabilities.

10
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and from these estimates of Pjj. the actual category probabilities. Hence,

the model provides probability forecasts of the four storm imminence

categories, for a given meteorological situation (as represented by the values

of the meteorological variables). These probabilistic forecasts can be given

directly as such, or may be converted, by methods described in Section 3.2.

into categorical forecasts.

The problem of evaluating statistical forecasts of this type has been,

and continues to be, a topic of major interest in meteorology. In Section

3.3. we consider two very simple methods of evaluating such forecasts; these

two methods do not necessarily lead to the same conclusions in relation to the

-_ relative performance of the various forecasts.

3.2 Use of the Model for Forecasting

We consider two possibilities:

(a) -Given the estimated probability forecast, a categorical forecast can

be provided by forecasting the category of maximal probability. We denote

this forecast by Fl.

(b) The model described by equation (10) (or. more intuitively by

equation (9)). suggests an underlying continuous variable, say Z. with the

explanatory variable falling into categories 1.2.3 or 4 accordingly as Z 0I ,

01 < Z 02 . 02 ( Z K 03' Z > 03, respectively. Given values of the

covariates, and estimates P of P. we can estimate Z by (in the notation of

equation (10))

I



: .. ... .- - - - -- - - -- - -- . .. .. ... . . .I. . I

0+ I Xmp
Z - l (17)

and then provide a categorical prediction that the storm imminence category is

1. 2. 3 or 4 according as

z o 91 0 1 < z. 02, 0 2 < z K 0 3. z > 0 3

This forecast is denoted by F2.

4

3.3 Evaluation of the forecasts

Since the two forecasts which we are considering here are categorical

* forecasts, one plausible criterion for evaluating these forecasts would be the

number of correct forecasts achieved. Different forecasts can be readily

compared using this measure. Since the categories being forecast are ordered.

an incorrect forecast which is within one category of being correct is

presumably preferable to one which "misses" by two or more categories. Hence

an alternative measure of performance would be the number of forecasts which

are within one category of being correct. We use both of the above measures

in the paper to compare forecasts. As we will show, the different criteria

can, in some cases, lead to a different ranking of forecasts.

In estimating the predictive performance of the model using the above

measures, we omitted each data point in turn. estimated the model parameters

from all the remaining data. and then used the forecast procedures Fl and F2

to predict the category of the omitted data point. For comparative purposes.

12



we also used the standard techniques of discriminant analysis and multiple

regression (using in the latter case as dependent variable the coded imminence

of tropical storm variable, which takes values 1. 2. 3 and 4.

4. Discussion

The results of the cross-validation procedure, described in Section 3.3.

for forecast methods Fl and F2. and for discriminant analysis and multiple

regression, are given in Tables 1.2.3 and 4 respectively. An overall summary

of the relative performance of the various methods is presented in Table 5.

We would emphasise that any conclusions drawn here in relation to the efficacy

of the various procedures are valid only in relation to the present

application. Broader statements about the general performance of these

methods would require extensive further analysis.

It is clear from Table 5 that no single technique is clearly superior.

Using the criterion of maximising the number of correct forecasts, the

generalized linear model applied in this paper, with forecasting strategy F2.

is the best among those considered. However, if maximising the numbers of

forecasts correct within one category is chosen as the comparative criterion,

then multiple regression emerges as the optimal methodology.

From Table 5 it is clear that the performance of discriminant analysis

is. in this application at least, somewhat inferior to that of the other

techniques. A comparison of Tables 1 and 2 (which use the same model but

different forecasting strategies based on the model) reveals some interesting

facets about each of these strategies. Procedure Fl always forecasts either

category I or category 4. and produces the highest overall percentage of

correct forecasts. Procedure F2 is less extreme, and "smears" .he category 1

13
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forecasts over categories 1 and 2. and the category 4 forecasts over

categories 3 and 4; this has the effect of reducing the percentage of correct

forecasts but increasing the percentage of forecasts correct to within one

category. Multiple regression "smears" the forecasts still further, with a

resultant decrease in the percentage of correct forecasts and increase in the

percentage correct to within one category. Multiple regression is. in fact.

the method which produces the highest overall percentage of forecasts correct

to within one category.

It is clear that the choice of strategy (forecasting procedure) among

those considered and described here will be greatly influenced by the relative

importance/seriousness of the various correct/incorrect forecasts. This

strongly suggests that a decision theoretic approach might be considered.

although, in practice, the specification of a loss function may be difficult

and may unduly influence the choice of strategy.
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Table 1
Forecast Procedure: Fl

Number of Forecasts

A~~ True ______ Forecast State

State 1 2 3 4 Total

1 27 0 0 34 61

2 10 0 0 32 42

V3 4 0 0 20 24

4 11 0 0 445 456

4total 52 0 0 531 583

Table 2
Forecast Procedure: F2

-. Number of Forecasts

True Forecast State

State 1 2 3 4 Total

1 18 9 7 27 61

2 8 2 5 27 42

3 1 3 3 17 24

4 4 7 17 428 456

total 31 21 32 499 583

15



Table 3
* Forecast Procedure: Discrimninant Analysis

Number of Forecasts

True Forecast State

State 1 2 3 4 Total

1 27 12 16 6 61

2 14 5 9 14 4~2

3 3 3 14 4 24

fl4 14 26 62 354 456

total 58 46 101 378 583

Table 4
Forecast Procedure: Multiple Regression

Number of Forecasts

True Forecast State

State 1 2 3 4 Total

1 4 21 31 5 61

2 0 11 21 10 42

3 0 2 18 4 24

%:4 0 11 110 335 456

total 4 405 180 354 583
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Table 5

Forecast % Correct % Forecasts
Procedure Forecasts Correct with

one Category

Fl 81 86

F2 77 88

Discriminant
Analysis 69 86

Multiple

Regression 63 90
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